

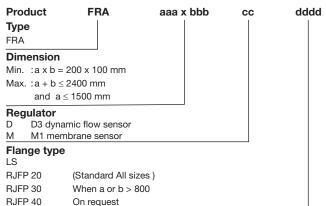
Lindab **FRA**

Flow measuring unit - rectangular

Description

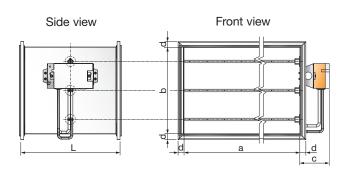
FRA is a measuring unit with a measuring cross used for measuring volume air flow rate in rectangular duct systems.

FRA is equipped with a regulator, providing an output signal that is proportional to the volume air flow rate. FRA can be used to monitor the actual airflow or can be used to control a volume flow regulator.


Regulators comes with either flow sensor (D3) for clean air or membrane sensor (M1) for contaminated air.

The FRA needs a certain distance of straight duct before the unit and this has to be observed to obtain a stable and accurate air flow regulation.

To avoid clogging of the measuring cross, it is recommended to use VRU only in applications with clean air, meaning free of dust, particles and similar.


- Belimo MP, Modbus, BACnet & analogue control 0(2)-10V.
- Integrated NFC interface, compatible with Belimo Assistant App.
- Tightness class B according to EN1751.

Order code

Example: FRA-500x200-M1-RJFP 20

Dimensions

NB! Different flange types are available, see order code and dimension table below.

a and b dimensions, see order code.

Dimension table

Flange type	d mm	L mm	c mm	
LS	20	341		
RJFP20	20	341	106	
RJFP30	30	342	100	
RJFP40	40	343		

Installation

Using LS-profile. Installation instruction, please go to Asembly instruction, Rectangular air duct systems, LS-profile.

Using RJFP-profiles. Installation instruction, please go to to Lindab rectangular duct systems, <u>RJFP</u>.

You can find general information about air duct systems, theory calculations following this <u>link</u>.

Regulator type table

Туре	Regulator		
FRA-D	VRU-D3-BAC		
FRA-M	VRU-M1-BAC		

Belimo documentation

For Belimo motor documentation, visit and read more on Belimo's homepage:

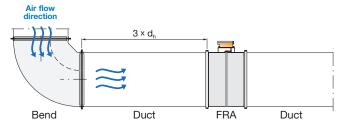
Туре	Documentation	
All	Belimo Universal	

Flow measuring unit-rectangular

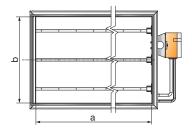
Technical data

Volume flow measurement

The accuracy of volume flow measurement depends on the flow conditions in front of the measuring cross. It is preferable to have a long straight duct section in front of the measuring point, according to the table below.


If these recommendations are not followed, it will cause an unstable flow measurement and therefore higher inaccuracy in the regulation of the required air flow.

Components	Recommended straight duct before unit
Bend	3 x d _h *
Tee-piece	4 x d _h *
Damper	6 x d _h *


 $d_{\scriptscriptstyle h}{}^{\star}$ is the hydraulic diameter for a rectangular duct (and FRA),

 d_{h} can be calculated by using FRA dimension a and b:

$$d_h^* = 2 \times a \times b / (a + b)$$

Example above showing top view of recommended straight duct distance between duct bend and a FRA.

Front view of FRA and dimension a and b.

FRA

Technical data

Settings

 V_{nom} indicates the measuring range for the actuator. A standard FRA is calibrated to a V_{nom} of 7 m/s according to the table below

In special cases the FRA can be set to a higher $\rm V_{\rm nom},~e.g.~10~m/s.$

The output signal from Belimo VAV universal is linear between 2 -10 V which corresponds to a flow between 0 and $\rm V_{nom}$.

Air flows corresponding to air velocities below 1.0 m/s will result in a 2 V signal.

$\ensuremath{\mathsf{FRA}_{\mathsf{nom}}}$ and measuring limit.

Size [mm]		Measuring li	Measuring limit = 1 [m/s]		(Standard) V _{nom} = 7 [m/s]		V _{nom} = 10 [m/s]	
а	x b	[m³/h]	[l/s]	[m³/h]	[l/s]	[m³/h]	[l/s]	
300	200	216	60	1512	420	2160	600	
400	200	288	80	2016	560	2880	800	
400	300	432	120	3024	840	4320	1200	
	200	360	100	2520	700	3600	1000	
500	300	540	150	3780	1050	5400	1500	
500	400	720	200	5040	1400	7200	2000	
	500	900	250	6300	1750	9000	2500	
	200	432	120	3024	840	4320	1200	
600	300	648	180	4536	1260	6480	1800	
600	400	864	240	6048	1680	8640	2400	
	500	1080	300	7560	2100	10800	3000	
	200	576	160	4032	1120	5760	1600	
800	300	864	240	6048	1680	8640	2400	
800	400	1152	320	8064	2240	11520	3200	
	500	1440	400	10080	2800	14400	4000	
	300	1080	300	7560	2100	10800	3000	
1000	400	1440	400	10080	2800	14400	4000	
1000	500	1800	500	12600	3500	18000	5000	
	600	2160	600	15120	4200	21600	6000	

Flow measuring unit-rectangular

Technical data

Adjustment and simulation tool

- Graphical display of setpoint and actual values.
- Create and print trend evaluations.
- Useful tool for troubleshooting on the MP-Bus®.
- Access levels can be defined and managed via
- Specialised software for OEMs to make efficient use of the tool in the production process.

ZTH EU Service Tool

- The handy ZTH EU Service Tool is connected directly to the actuator for parameterisation.
- Reliable and proven connection via the tool socket.
- Supply via actuator always ready.
- MP-Bus® tester integrated (packet counter, signal
- ZIP level converter to USB for connecting the actuator with the PC Tool.

You can find further information about the possible connections of the ZTH EU Service Tool at Belimo.com.

Belimo Assistant 2 app.

- Belimo-enheder mærket med NFC-logoet kan have specielle parameterindstillinger udført via Belimo assistent 2 appen.
- Kan installeres på alle Android mobiltelefoner og iPho-
- Kan betjenes med lethed ved hjælp af smartphones berøringsskærm.
- Parametre kan ændres i aktuatoren i strømløs tilstand.
- Opdateringer foretages automatisk via Google Play eller Apple App Store.

ZIP-BT-NFC Bluetooth to NFC converter

- Allows for simple use of the Belimo Assistant App via Bluetooth with Android mobile phones and i Phones in order to parameterise NFC enabled devices.
- Safe to attach to the actuator thanks to countless micro suction cups attached to the bottom.

Most of us spend the majority of our time indoors. Indoor climate is crucial to how we feel, how productive we are and if we stay healthy.

We at Lindab have therefore made it our most important objective to contribute to an indoor climate that improves people's lives. We do this by developing energy-efficient ventilation solutions and durable building products. We also aim to contribute to a better climate for our planet by working in a way that is sustainable for both people and the environment.

Lindab | For a better climate

